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1. Well-Ordering Principle

First we establish a few properties of the integers which we need in order to
develop the Euclidean algorithm. One tool which can be used to establish these
properties is the Well-Ordering Principle.

Proposition 1 (Well-Ordering Principle).
Let X ⊂ N be a nonempty set of nonnegative integers. Then X contains a smallest
element; that is, there exists x0 ∈ X such that for every x ∈ X, x ≤ x0.

Discussion. For the purposes of this class, we accept the Well-Ordering Principle
as an axiom of the natural numbers. In a more formal treatment, it is equivalent
to the Principle of Mathematical Induction, in the sense that either can be proven
from the other, given some reasonable definition of the natural numbers. �

2. The Division Algorithm

Proposition 2 (Division Algorithm).
Let m,n ∈ Z with m 6= 0. There exist unique integers q, r ∈ Z such that

n = qm + r and 0 ≤ r < |m|.

We offer two proofs of this, one using the well-ordering principle directly, and
the other phrased in terms of strong induction.

Proof. First assume that m and n are positive.
Let X = {z ∈ Z | z = n − km for some k ∈ Z}. The subset of X consisting of

nonnegative integers is a subset of N, and by the Well-Ordering Principle, contains
a smallest member, say r. That is, r = n− qm for some q ∈ Z, so n = qm + r. We
know 0 ≤ r. Also, r < m, for otherwise, r −m is positive, less than r, and in X.

For uniqueness, assume n = q1m+ r1 and n = q2m+ r2, where q1, r1, q2, r2 ∈ Z,
0 ≤ r1 < m, and 0 ≤ r2 < m. Then m(q1 − q2) = r1 − r2; also −m < r1 − r2 < m.
Since m | (r1 − r2), we must have r1 − r2 = 0. Thus r1 = r2, which forces q1 = q2.

The proposition remains true if one or both of the original numbers are negative
because, if n = mq + r with 0 ≤ r < m, then 0 ≤ m− r < m when r > 0, and

• (−n) = m(−q − 1) + (m− r) if r > 0 and (−n) = m(−q) if r = 0;
• (−n) = (−m)(q + 1) + (m− r) if r > 0 and (−n) = (−m)q if r = 0;
• n = (−m)(−q) + r.

�
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3. The Euclidean Algorithm

Definition 1. Let m,n ∈ Z. We say that m divides n, and write m | n, if there
exists an integer k such that n = km.

Definition 2. Let m,n ∈ Z be nonzero. We say that a positive integer d ∈ Z is a
greatest common divisor of m and n, and write d = gcd(m,n), if

(a) d | m and d | n;
(b) e | m and e | n implies e | d, for all e ∈ Z.

Proposition 3 (Euclidean Algorithm).
Let m,n ∈ Z be nonzero. Then there exists a unique d ∈ Z such that d = gcd(m,n),
and there exist integers x, y ∈ Z such that

d = xm + yn.

Proof. Let X = {z ∈ Z | z = xm + yn for some x, y ∈ Z}. Then the subset of X
consisting of positive integers contains a smallest member, say d, where d = xm+yn
for some x, y ∈ Z.

Now m = qd + r for some q, r ∈ Z with 0 ≤ r < d. Then m = q(xm + yn) + r,
so r = (1− qxm)m + (qy)n ∈ X. Since r < d and d is the smallest positive integer
in X, we have r = 0. Thus d | m. Similarly, d | n.

If e | m and e | n, then m = ke and n = le for some k, l ∈ Z. Then d =
xke + yle = (xk + yl)e. Therefore e | d. This shows that d = gcd(m,n).

For uniqueness of a greatest common divisor, suppose that e also satisfies the
conditions of a gcd. Then d | e and e | d. Thus d = ie and e = jd for some i, j ∈ Z.
Then d = ijd, so ij = 1. Since i and j are integers, then i = ±1. Since d and e are
both positive, we must have i = 1. Thus d = e. �

This shows that the d = gcd(m,n) exists and the formula xm + yn = d holds,
but does not give a method of finding x, y, and d. The method we develop is based
on the following propositions.

Proposition 4. Let m,n ∈ N and suppose that m | n. Then gcd(m,n) = m.

Proof. Clearly m | m, and we are given m | n. Now suppose that e | m and e | n.
Then e | m. Thus m = gcd(m,n). �

Proposition 5. Let m,n ∈ Z be nonzero, and let q, r ∈ Z such that n = qm + r.
Then gcd(n,m) = gcd(m, r).

Proof. Let d = gcd(n,m). We wish to show that d = gcd(m, r), which requires
showing that d satisfies the two properties of being the greatest common divisor of
m and r.

Since d = gcd(n,m), we know that d | n and d | m. Thus n = ad and m = bd
for some a, b ∈ Z. Now r = n −mq = ad − bdq = d(a − bq), so d | r. Thus d is a
common divisor of m and r.

Let e ∈ Z such that e | m and e | r. Then m = ge and n = he for some g, h ∈ Z,
so n = geq +he = e(gq +h); thus e | n, so e is a common divisor of n and m. Since
d = gcd(n,m), e | d. Therefore, d = gcd(m, r). �
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There is an efficient effective procedure for finding the greatest common divisor
of two integers. It is based on the following proposition.

Now let m,n ∈ Z be arbitrary integers, and write n = mq+ r, where 0 ≤ r < m.
Let r0 = n, r1 = m, r2 = r, and q1 = q. Then the equation becomes r0 = r1q1 + r2.
Repeat the process by writing m = rq2+r3, which is the same as r1 = r2q2+r3, with
0 ≤ r3 < r2. Continue in this manner, so in the ith stage, we have ri−1 = riqi+ri+1,
with 0 ≤ ri+1 < ri. Since ri keeps getting smaller, it must eventually reach zero.

Let k be the smallest integer such that rk+1 = 0. By the above proposition and
induction,

gcd(n,m) = gcd(m, r) = · · · = gcd(rk−1, rk).

But rk−1 = rkqk + rk+1 = rkqk. Thus rk | rk−1, so gcd(rk−1, rk) = rk. There-
fore gcd(n,m) = rk. This process for finding the gcd is known as the Euclidean
Algorithm.

In order to find the unique integers x and y such that xm+ yn = gcd(m,n), use
the equations derived above and work backward. Start with rk = rk−2− rk−1qk−1.
Substitute the previous equation rk−1 = rk−3 − rk−2qk−2 into this one to obtain

rk = rk−2 − (rk−3 − rk−2qk−2)qk−1 = rk−2(qk−2qk−1 + 1)− rk−3qk−1.

Continuing in this way until you arrive back at the beginning.

Example 1. Let n = 210 and m = 165.

(a) Find d ∈ Z such that d = gcd(n,m).
(b) Find x, y ∈ Z such that xm + yn = d.

Solution. Work forward to find the gcd:

• 210 = 165 · 1 + 45;
• 165 = 45 · 3 + 30;
• 45 = 30 · 1 + 15;
• 30 = 15 · 2 + 0.

Therefore, gcd(210, 165) = 15. Now work backwards to find the coefficients:

• 15 = 45− 30 · 1;
• 15 = 45− (165− 45 · 3) = 45 · 4− 165;
• 15 = (210− 165) · 4− 165 = 210 · 4− 165 · 5.

Therefore, 15 = 210 · 4 + 165 · (−5). �

Let’s briefly analyze the inductive process of “working backwards”, to see how
the lifted coefficients are functions of the previous coefficients.

At each stage we have an equation of the form d = x′m′ + y′n′, which we wish
to lift to a previous equation of the form n = mq + r, where m = n′ and r = m′.
Thus we have d = x′r + y′m, and r = n−mq. Plug the second into the first to get

d = x′r + y′m

= x′(n−mq) + y′m

= x′n− x′mq + y′m

= (y′ − x′q)m + (x′)n

= xm + yn

Thus we see that, to obtain our new d = xm + ym, we need to set

x = y′ − x′q and y = x′.
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4. Relative Primality

Definition 3. Let m,n ∈ Z. We say that m and n are relatively prime if

gcd(m,n) = 1.

Proposition 6. Let m,n ∈ Z. Then

gcd(m,n) = 1 ⇔ xm + yn = 1 for some x, y ∈ Z.
Proof. We have already seen that if gcd(m,n) = 1, then xm + yn = 1 for some
x, y ∈ Z. Thus we prove the reverse direction; suppose that xm + yn = 1 for some
x, y ∈ Z. We wish to show that gcd(m,n) = 1.

Clearly 1 | m and 1 | n. Suppose that e | m and e | n. Then m = ke and n = le
for some k, l ∈ e. So

1 = xke + yle = (xk + yl)e.

Thus e | 1, whence gcd(m,n) = 1. �

Proposition 7. Let m,n, d ∈ Z such that gcd(m,n) = d. Then gcd(m
d ,

n
d ) = 1.

Proof. Since xm + yn = d for some x, y ∈ Z, we have xm
d + y n

d = 1. From
Proposition 6, we conclude that gcd(m

d ,
n
d ) = 1. �

Proposition 8. Let a, b, c ∈ Z. If a | bc and gcd(a, b) = 1, then a | c.
Proof. Since a | bc, there exists z ∈ Z such that az = bc. Since gcd(a, b) = 1, there
exist x, y ∈ Z such that xa + yb = 1. Multiplying both sides by c gives

xac + ybc = c⇒ xac + yaz = c⇒ a(xc + yz) = c.

Thus a | c. �

Proposition 9. Let a, b, c ∈ Z. If a | c, b | c, and gcd(a, b) = 1, then ab | c.
Proof. There exist e, f, x, y ∈ Z such that ae = c, bf = c, and xa + yb = 1.
Multiplying the last equation by c gives xac + ybc = c. Substitution gives xabf +
ybae = c, so ab(xf + ye) = c. Thus ab | c. �

Definition 4. Let m,n ∈ Z. We say that a positive integer l ∈ Z is a least common
multiple of m and n, and write l = lcm(m,n), if

(a) m | l and n | l;
(b) m | k and n | k implies l | k, for all k ∈ Z.

Proposition 10. Let m,n ∈ Z be nonzero. Then there exists a unique l ∈ Z such
that l = lcm(m,n), and if d = gcd(m,n), then

l =
mn

d
.

Proof. Let l = mn
d ; we wish to show that l is a least common multiple for m and

n. Since d = gcd(m,n), m
d and n

d are integers, and l = mn
d = nm

d . Thus m | l and
n | l.

Now suppose that k is an integer such that m | k and n | k; we wish to show that
l | k. We have k = ae and k = bf for some e, f ∈ Z. Thus ae = bf , and dividing
by d gives ea

d = f b
d . Thus a

d | f
b
d , and since gcd(a

d ,
b
d ) = 1, we have a

d | f . Thus

f = g a
d for some g ∈ Z, so k = bf = g ab

d = gl. Thus l | k, so l is a least common
multiple of m and n.

For uniqueness, note that any two least common multiples must divide each
other; but they are both positive, so they must be equal. �
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5. Fundamental Theorem of Arithmetic

Definition 5. An integer p ≥ 2, is called prime if

a | p⇒ a = 1 or a = p, where a ∈ N.

Proposition 11. Let a, p ∈ Z, with p prime. Then

gcd(a, p) =

{
p if p | a;

1 otherwise.

Proof. Let d = gcd(a, p). Then d | p, so d = 1 or d = p. We have p | p, so if p | a,
we have p | d. In this case, d = p. If p does not divide a, then d 6= p, so we must
have d = 1. �

Proposition 12 (Euclid’s Argument).
Let p ∈ Z, p ≥ 2. Then p is prime if and only if

p | ab⇒ p | a or p | b, where a, b ∈ N.

Proof.
(⇒) Given that a | p ⇒ a = 1 or a = p, suppose that p | ab. Then there exists
k ∈ N such that kp = ab. Suppose that p does not divide a; then gcd(a, p) = 1.
Thus there exist x, y ∈ Z such that xa+yp = 1. Multiply by b to get xab+ypb = b.
Substitute kp for ab to get (xk + yb)p = b. Thus p | b.
(⇐) Given that p | ab⇒ p | a or p | b, suppose that a | p. Then there exists k ∈ N
such that ak = p. So p | ak, so p | a or p | k. If p | a, then pl = a for some l ∈ N,
in which case alk = a and lk = 1, which implies that k = 1 so a = p. If p | k, then
k = pm for some m ∈ N, and apm = p, so am = 1 which implies that a = 1. �

Proposition 13. Let n ∈ Z with n ≥ 2. There exists a prime p such that p | n.

Proof. Assume the proposition is false; then there exists a smallest positive integer
n which is not divisible by a prime. But then n = ab for some a, b ∈ Z where
1 < a < n, so a is divisible by a prime, which in turns must divide n. �

Proposition 14. (Fundamental Theorem of Arithmetic)
Let n ∈ Z, n ≥ 2. Then there exist unique prime numbers p1, . . . , pr, unique up to
order, such that

n =

r∏
i=1

pi.

Proof. We know that n is divisible by some prime, say n = pm for some p,m ∈ Z
with p prime. Since m is smaller than n, we conclude by induction that m factors
into a product of primes; thus n = pm factors into a product of primes. To see that
this factorization is unique, suppose that there exist prime p1, . . . , pr and q1, . . . , qs
such that

n = p1p2 · · · pr = q1q2 · · · qs.
By repeatedly applying Euclid’s Argument, we see that p1 | qi for some i, and by
renumbering if necessary, we may assume that p1 | q1. Since q1 is prime, p1 = 1 or
p1 = q1; but p1 is also prime, so it is greater than 1; thus p1 = q1. Canceling these,
we see that p2 · · · pr = q2 · · · qs, and we may repeat this process obtaining p2 = q2,
p3 = q3, and so forth. We also see that r = s, for otherwise, we would obtain an
equation in which a product of primes equals one. �



6

6. Mathematical Exercises

Exercise 1. In each case, find d = gcd(m,n), and find x, y ∈ Z such that

mx + ny = d.

(a) m = 75, n = 300
(b) m = 123, n = 248
(c) m = 528, n = 71

Exercise 2. Let a, b, c ∈ N be positive. Show that

(a) a | a;
(b) a | b and b | a implies a = b;
(c) a | b and b | c implies a | c.

7. Programming Exercises

Write all programs using the C programming language and the standard library.

Program 1. Write a function which takes m,n ∈ Z and uses the Euclidean Algo-
rithm to find d = gcd(m,n).

Program 2. Write a function which takes m,n ∈ Z and uses the Euclidean Algo-
rithm to find d = gcd(m,n) and x, y ∈ Z such that xm + yn = d.

Hint. The computation of gcd(m,n) does not require the remembrance of the pre-
vious equations; however, the computation of the x and y does. You can either use
an array to store the remainders, or you can use recursion. �

Program 3. Write a function which takes m,n ∈ Z and finds l = lcm(m,n).

Program 4. Write a program to find the first MAX prime numbers.

Program 5. Write a program which prints the prime factors of a given integer.
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